信息发布→ 登录 注册 退出

PyTorch手写数字数据集进行多分类

发布时间:2026-01-11

点击量:
目录
  • 一、实现过程
    • 0、导包
    • 1、准备数据
    • 2、设计模型
    • 3、构造损失函数和优化器
    • 4、训练和测试
  • 二、参考文献

    一、实现过程

    本文对经典手写数字数据集进行多分类,损失函数采用交叉熵,激活函数采用ReLU,优化器采用带有动量的mini-batchSGD算法。

    所有代码如下:

    0、导包

    import torch
    from torchvision import transforms,datasets
    from torch.utils.data import DataLoader
    import torch.nn.functional as F
    import torch.optim as optim

    1、准备数据

    batch_size = 64
    transform = transforms.Compose([
        transforms.ToTensor(),
        transforms.Normalize((0.1307,),(0.3081,))
    ])
    
    # 训练集
    train_dataset = datasets.MNIST(root='G:/datasets/mnist',train=True,download=False,transform=transform)
    train_loader = DataLoader(train_dataset,shuffle=True,batch_size=batch_size)
    # 测试集
    test_dataset = datasets.MNIST(root='G:/datasets/mnist',train=False,download=False,transform=transform)
    test_loader = DataLoader(test_dataset,shuffle=False,batch_size=batch_size)

    2、设计模型

    class Net(torch.nn.Module):
        def __init__(self):
            super(Net, self).__init__()
            self.l1 = torch.nn.Linear(784, 512)
            self.l2 = torch.nn.Linear(512, 256)
            self.l3 = torch.nn.Linear(256, 128)
            self.l4 = torch.nn.Linear(128, 64)
            self.l5 = torch.nn.Linear(64, 10)
    
        def forward(self, x):
            x = x.view(-1, 784)
            x = F.relu(self.l1(x))
            x = F.relu(self.l2(x))
            x = F.relu(self.l3(x))
            x = F.relu(self.l4(x))
            return self.l5(x)
    model = Net()
    # 模型加载到GPU上
    device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu")
    model.to(device)

    3、构造损失函数和优化器

    criterion = torch.nn.CrossEntropyLoss()
    optimizer = optim.SGD(model.parameters(),lr=0.01,momentum=0.5)

    4、训练和测试

    def train(epoch):
        running_loss = 0.0
        for batch_idx, data in enumerate(train_loader, 0):
            inputs, target = data
            optimizer.zero_grad()
    
            # forward+backward+update
            outputs = model(inputs.to(device))
            loss = criterion(outputs, target.to(device))
            loss.backward()
            optimizer.step()
    
            running_loss += loss.item()
            if batch_idx % 300 == 299:
                print('[%d,%d] loss: %.3f' % (epoch + 1, batch_idx + 1, running_loss / 300))
                running_loss = 0.0
    def test():
        correct = 0
        total = 0
        with torch.no_grad():
            for data in test_loader:
                images, labels = data
                outputs = model(images.to(device))
                _, predicted = torch.max(outputs.data, dim=1)
                total += labels.size(0)
                correct += (predicted.cpu() == labels).sum().item()
        print('Accuracy on test set: %d %%' % (100 * correct / total))
    
    for epoch in range(10):
        train(epoch)
        test()

    运行结果如下:

    [1,300] loss: 2.166
    [1,600] loss: 0.797
    [1,900] loss: 0.405
    Accuracy on test set: 90 %
    [2,300] loss: 0.303
    [2,600] loss: 0.252
    [2,900] loss: 0.218
    Accuracy on test set: 94 %
    [3,300] loss: 0.178
    [3,600] loss: 0.168
    [3,900] loss: 0.142
    Accuracy on test set: 95 %
    [4,300] loss: 0.129
    [4,600] loss: 0.119
    [4,900] loss: 0.110
    Accuracy on test set: 96 %
    [5,300] loss: 0.094
    [5,600] loss: 0.092
    [5,900] loss: 0.091
    Accuracy on test set: 96 %
    [6,300] loss: 0.077
    [6,600] loss: 0.070
    [6,900] loss: 0.075
    Accuracy on test set: 97 %
    [7,300] loss: 0.061
    [7,600] loss: 0.058
    [7,900] loss: 0.058
    Accuracy on test set: 97 %
    [8,300] loss: 0.043
    [8,600] loss: 0.051
    [8,900] loss: 0.050
    Accuracy on test set: 97 %
    [9,300] loss: 0.041
    [9,600] loss: 0.038
    [9,900] loss: 0.043
    Accuracy on test set: 97 %
    [10,300] loss: 0.030
    [10,600] loss: 0.032
    [10,900] loss: 0.033
    Accuracy on test set: 97 %

    二、参考文献

    • [1] https://www.bilibili.com/video/BV1Y7411d7Ys?p=9

     到此这篇关于PyTorch手写数字数据集进行多分类的文章就介绍到这了,更多相关python多分类内容请搜索以前的文章或继续浏览下面的相关文章希望大家以后多多支持!

    在线客服
    服务热线

    服务热线

    4008888355

    微信咨询
    二维码
    返回顶部
    ×二维码

    截屏,微信识别二维码

    打开微信

    微信号已复制,请打开微信添加咨询详情!